Eigenvalues and Expanders
ثبت نشده
چکیده
Linear expanders have numerous applications to theoretical computer science. Here we show that a regular bipartite graph is an expander ifandonly if the second largest eigenvalue of its adjacency matrix is well separated from the first. This result, which has an analytic analogue for Riemannian manifolds enables one to generate expanders randomly and check efficiently their expanding properties. It also supplies an efficient algorithm for approximating the expanding properties of a graph. The exact determination of these properties is known to be coNP-complete.
منابع مشابه
Eigenvalues, Expanders and Superconcentrators
Explicit construction of families of linear expanders and superconcentrators is relevant to theoretical computer science in several ways. There is essentially only one known explicit construction. Here we show a correspondence between the eigenvalues of the adjacency matrix of a graph and its expansion properties, and combine it with results on Group Representations to obtain many new examples ...
متن کاملA Cheeger-Type Inequality on Simplicial Complexes
In this paper, we consider a variation on Cheeger numbers related to the coboundary expanders recently defined by Dotterer and Kahle. A Cheeger-type inequality is proved, which is similar to a result on graphs due to Fan Chung. This inequality is then used to study the relationship between coboundary expanders on simplicial complexes and their corresponding eigenvalues, complementing and extend...
متن کاملSpectral Graph Theory, Expanders, and Ramanujan Graphs
We will introduce spectral graph theory by seeing the value of studying the eigenvalues of various matrices associated with a graph. Then, we will learn about applications to the study of expanders and Ramanujan graphs, and more generally, to computer science as a whole.
متن کاملEigenvalues of graphs
2 Eigenvalues of graphs 5 2.1 Matrices associated with graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 The largest eigenvalue . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.1 Adjacency matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.2.2 Laplacian . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3...
متن کاملLecture 2: Eigenvalues and Expanders 2.1 Lecture Outline
There is a connection between the expansion of a graph and the eigengap (or spectral gap) of the normalized adjacency matrix (that is, the gap between the first and second largest eigenvalues). Recall that the largest eigenvalue of the normalized adjacency matrix is 1; denote it by λ1 and denote the second largest eigenvalue by λ2. We will see that a large gap (that is, small λ2) implies good e...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 1986